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ESPI filtering method based on anisotropic coherence

diffusion and Perona-Malik diffusion
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Noise reduction is one of the most important concerns in electronic speckle pattern interferometry (ESPI).
According to partial differential equation (PDE) filtering theory, we present an anisotropic PDE noise-
reduction model based on fringe structure information for interferometric fringe patterns. This model is
based on coherence diffusion and Perona-Malik (P-M) diffusion. The former can protect the structure
information of fringe pattern, while the latter can effectively filter off the noise inside the fringes. The
proposed model generated by the two diffusion methods helps to obtain good effects of denoising and
fidelity. ESPI fringes and the phase pattern are tested. Experimental results validate the performance of
the proposed filtering model.
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Electronic speckle pattern interferometry (ESPI) is a
non-destructive optical measurement technique, which
is widely used in deformation measurement and nonde-
structive testing of rough surface[1,2]. Accurate extrac-
tion of phase from fringe patterns is of fundamental im-
portance for the successful application of ESPI in obtain-
ing displacement. However, strong grain-shaped random
noise in the fringe patterns usually leads to significant er-
rors in phase extraction. To reduce measurement errors,
the inherent noise of fringe patterns should be removed
in ESPI[3].

The method based on partial differential equation
(PDE) is widely used in image processing and computer
vision. This technique changes image according to a
specified PDE, and the solution of the PDE is the pro-
cessed result[4]. Perona et al.

[5] proposed a nonlinear
diffusion model, which they named Perona-Malik (P-M)
diffusion. This model can protect the edges in image
denoising, which gives a fresh direction for subsequent
applications of PDEs in image processing. Weickert[6]

constructed a coherent enhancement model, which intro-
duced structure tensor to denote the local structure in-
formation of an image and achieves good filtering results
for fingerprint image.

In this letter, the advantages and disadvantages of P-
M diffusion and coherent enhancement models in ESPI
are analyzed. Based on anisotropic tensor and P-M
diffusions, a PDE denoising model is established. The
effectiveness of the proposed method in ESPI is tested
on computer-simulated and practically captured fringes.

Let u0: R2 → R, where u0(x, y) is the gray-level of
pixel (x, y), which represents a gray-level image to be
processed. The image deforms with time t as

∂u

∂t
= F [u(x, y, t)], u(x, y, 0) = u0(x, y), (1)

where u(x, y, t): R2×[0, τ ] → R is the evolving image;

F : R → R is an operator that depends on the purpose of
processing, such as denoising, enhancement, and segmen-
tation; the image u0 is the initial condition. The solution
u(x, y, t) of Eq. (1) gives the processed image.

Perona et al.
[5] obtained denoised image by solving the

following diffusion equation:







∂u

∂t
= div(g(|∇u|)∇u)

u(x, y, 0) = u0(x, y)
, (2)

where ∇u is the gradient of the evolving image u with
respect to the filtered result, and g is a smooth non-
increasing function with g(|∇u|) = k2/(k2 + |∇u|2), in
which k is a constant parameter. Smoothing is per-
formed based on the following assumptions. If the value
of ∇u(x, y) is large, (x, y) will be located at the edge of
the image. Then, the diffusion will be slow, and the exact
localization of the edges will be maintained. However, if
the value of ∇u(x, y) is small, (x, y) will be located in the
flat region, then the diffusion will tend to be smoother
around (x, y). g evidently influences the diffusion speed.
Therefore, minimal smoothing is acquired around the
edge of the image. Although Perona et al. made sig-
nificant improvement on the theory and obtained better
filtering result, Eq. (2) was still isotropic around the lo-
cal area of each pixel. In addition, the problem of edge
blurring is unavoidable.

Weickert introduced the structure tensor matrix,
through which richer local structure information can be
obtained[7]. An anistropic tensor diffusion model is pro-
duced based on the structure information of an image.
The structure tensor matrix J is defined as

J =
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where uσ represents the smoothed image by the Gaussian
filter with parameter σ, and Gρ is the Gaussian kernel
function with parameter ρ.

The two eigenvalues of J can be represented as

λ1,2 =
1

2
(j11 + j22 ±

√

(j11 − j22)2 + 4j2
12). (4)

The eigenvectors ξ and η are

ξ =
∇u

|∇u|
= (cos θ, sin θ), (5)

η =
∇⊥u

|∇u|
= (− sin θ, cos θ), (6)

where θ = 1
2 arctan 2j12

j11−j22
. To characterize the struc-

ture information of an image, the coherence function is
defined as

H = (λ1 − λ2)
2 = (j11 − j22)

2 + 4j12. (7)

If λ1 = λ2 = 0, then H = 0, which means that the gray
scales near the current point vary nonsignificantly in all
directions, and the current point is in the flat region of
the image.

If λ1 ≫ λ2 = 0, then H ≫ 0, which signifies that the
gray scales change much greater in a certain direction
than that in its vertical direction, and the image has ob-
vious edge characteristics at the current point.

If λ1 > λ2 ≫ 0, then H > 0, which shows that the gray
scales on both perpendicular directions change rapidly;
therefore, corners or “T” structures exist near this point.

Hence, Weickert[6] proposed the tensor diffusion model
as

∂u

∂t
= div(D∇u), (8)

where D is a 2 × 2 positive, definite matrix, which has
the same eigenvectorsas the structure tensor J. Hence,
D can control the diffusion direction of the equation. To
protect important structural information, such as edges
and corners, the diffusion coefficients µ1 and µ2 along
the two perpendicular directions ξ and η are identified
as















µ1 = α

µ2 =







α, λ1 = λ2

α + (1 − α) exp
[ 1

(λ1 − λ2)2

]

, else

,

(9)
where α is a small positive number to protect the image
edge, e.g., α = 0.00001.

In the strong coherence areas of the image (H ≫ 0),
i.e., the image edges, µ2 ≈ 1, which is close to the maxi-
mum diffusion rate and has full diffusion along the direc-
tion of η. When the image has no significant coherence,
i.e., in the corners or flat areas, H ≈ 0 and µ2 ≈ α,
diffusion will become very slow to protect the corners.

However, the noise in the flat areas cannot be well re-
moved.

Using Eqs. (5), (6), and (9), the elements of the matrix
D are easily obtained as

D =

(

a b
b c

)

, (10)

where










a = µ1 cos2 θ + µ2 sin2 θ

b = (µ1 − µ2) sin θ cos θ

c = µ2 cos2 θ + µ1 sin2 θ

. (11)

Hence, the tensor diffusion model is inclined to diffuse
along the η direction, which can repair the broken edges
of the image and protrude the edge or corner features.
However, an excessive drive for the structural informa-
tion will lead to the problem that the diffusion equation
considers the noise points in the flat region as a part of
the edges, which can lead to virtual stripes in the flat
region.

According to the analysis above, given that ESPI
fringes have no obvious edge, the diffusion coefficient g in
Eq. (2) is still large around the image edges, and a clear
filtered ESPI fringe cannot be obtained by P-M diffusion
model. However, the P-M equation can remove noises
sufficiently in flat areas. With coherent coefficients, the
tensor diffusion model has a good ability of edge-repair
in image edges. However, in flat regions with small co-
herence, filtering is not sufficient and denoising effect is
not satisfied. Thus, we propose the following diffusion
equation:

∂u

∂t
= G1(µ1uξξ + µ2uηη) + G2div(g(|∇u|)∇u), (12)

where


















uηη =
uxxu2

y − 2uxuyuxy + uyyu
2
x

u2
x + u2

y

uξξ =
uxxu2

x + 2uxuyuxy + uyyu
2
y

u2
x + u2

y

, (13)

are the second derivatives of u along the ξ and η direc-
tions, respectively, and µ1 and µ2 conform to Eq. (10).

In Eq. (12), the first part, depending on the co-
herent diffusion, can protect corners and repair edges.
The second part ensures enough smoothing in flat re-
gions. To modify the relationship of the two parts, we set
G1 = 1 − g(|∇u|) and G2 = g(|∇u|). At the edge areas,
g(|∇u|) is smaller, and the first part plays a main part in
diffusion to repair the edges and protect the corners. In
flat regions, g(|∇u|) is larger, and the second part plays
the main role in diffusion to achieve fully smoothness.

To solve Eq. (12) numerically, the equation has to be
discretized. The image is represented by M × N matrix
of intensity values. For any function (i.e., image) u(x, y),
we thus let ui,j denote u(i, j) for 1< i < M , 1< j < N .
The evolution equations give images at tn = n∆t. We de-
note u(i, j, tn) by un

i,j . The time derivative ut at (i, j, tn)
is approximated by the forward difference as

(ut)
n
i,j =

un+1
i,j − un

i,j

∆t
, (14)
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where ∆t is the step-size in the time domain.
The spatial derivatives are
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(uy)n
i,j =

un
i,j+1 − un

i,j−1

2
(uxx)n
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i+1,j − 2un

i,j + un
i−1,j

(uyy)n
i,j = un

i,j+1 − 2un
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i,j−1

(uxy)n
i,j =

un
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i−1,j+1 − un
i+1,j−1 + un
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4

.

(15)
(uξξ)

n
i,j and (uηη)n

i,j can be expressed by Eqs. (13) and

(15). Let α = g(|∇u|), the discrete form of Eq. (12) is

un+1
i,j = un

i,j + ∆t
{

(1 − αn
i,j)[µ1(uξξ)

n
i,j

+ (µ2)
n
i,j(uηη)n

i,j ] + αn
i,j

·
[(αux)n

i+1,j − (αux)n
i−1,j ] + [(αuy)n

i,j+1 − (αuy)n
i,j−1]

2

}

.

(16)

The proposed method can be used in ESPI fringes.
To validate the performance of the method, we test it
on computer-simulated and practically captured fringes
and compare it with the P-M diffusion and the tensor
diffusion models.

Figure 1(a) shows a computer-simulated ESPI fringe[8],
which is generated based on the following equation:

I(x, y) = P (x, y) + Q(x, y) cosϕ(x, y) + NA(x, y), (17)

where P (x, y) is the background intensity, Q(x, y)/
P (x, y) is the fringe contrast, and NA(x, y) is the addi-
tive Gaussian white noise of the fringe patterns. φ(x, y)
is related to a physical variable to be inspected. Let
P (x, y) ≡ 150, and Q(x, y) ≡ 80, ϕ(x, y) can be calcu-
lated as

ϕ(x, y) = 22.5π

[

(

x − M/2

M/2

)2

+

(

y − N/2

N/2

)2
]

, (18)

where M and N are the image row and column, respec-
tively. In this study, we choose M = 200 and N = 250.
The processed results are shown in Figs. 1(b)–(d), in-
cluding the filtered results of the P-M diffusion, the
tensor diffusion, and the proposed models, with n = 80,
∆t = 0.2, and k = 10.

The experimentally obtained ESPI image, which de-
picts the derivative of the out-of-plane displacement of
a steel plate, is shown in Fig. 2(a). The steel plate is
rigidly clamped at its boundary and is subjected to a
load. The tested results for Fig. 2(a) are shown in Figs.
2(b)–(d) with n = 150, ∆t = 0.2, and k = 10.

As shown in Figs. 1(b) and 2(b), the image filtered
by the P-M diffusion model is blurred severely. Some
virtual structures appear in the filtered fringe of the
tensor diffusion model, as shown in Figs. 1(c) and 2(c).
Obviously, the proposed model performs significantly
better in both noise reduction and edge protection than
the other two diffusion models, as shown in Figs. 1(d)
and 2(d).

At the same time, combining with the sine/cosine fil-
ter, we test the three models to the phase pattern, with
n = 90, ∆t = 0.2, and k = 10. The results are shown in
Fig. 3. The filter result of our model is obviously better

Fig. 1. Computer-simulated fringe and its filtered results. (a)
Original computer-simulated fringe; filtered results of (b) the
P-M diffusion, (c) the tensor diffusion, and (d) the proposed
models.

Fig. 2. Experimentally obtained fringe and its filtered results.
(a) Original fringe; filtered results of (b) the P-M diffusion,
(c) the tensor diffusion, and (d) the proposed models.

Fig. 3. Phase pattern and its filtered results. (a) Original
phase pattern; filtered result of (b) the P-M diffusion, (c) the
tensor diffusion, and (d) the proposed models.
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than the former models and can keep the information of
phase jump, while removing the inconsistent dots in the
phase pattern effectively.

To measure quantitatively the performance of our
model, two parameters, namely, fidelity and speckle in-
dex, are used to evaluate the filtering effect. Fidelity can
be defined[9] as

f = 1 −

∑

(I0 − I)2
∑

I2
0

, (19)

where I is the processed fringe, and I0 is the ideal non-
noised fringe. A high fidelity value indicates that the
processed image is very similar to the noiseless one, i.e.,
has a good fidelity.

The speckle index s is used to quantify the local
smoothness of the filtered fringe patterns. This parame-
ter is evaluated as the average of the ratios of the local
standard deviation to its mean[9]:

s =
1

M × N

M
∑

k=1

N
∑

l=1

σk,l

〈Ik,l〉
, (20)

where 〈Ik,l〉 is the average gray in the neighborhood for
a window of 3 × 3 pixels of the current point, and local
standard deviation σk,l is defined as

σk,l =

√

1

8

1
∑

i=−1

1
∑

j=−1

(Ik−i,l−j − 〈Ik,l〉)
2. (21)

The speckle index can be regarded as an average re-
ciprocal of the signal-to-noise ratio, where the signal is
the mean value, and the noise is the standard deviation.
Therefore, a low speckle index will be regarded as an
indication of the local smoothness of the fringe pattern.

We calculate f and s of each filtered results in Fig. 1,
which are given in Table 1. Firstly, Table 1 shows that
our model can give the largest fidelity among the three
diffusion models under the same conditions. Given that
the diffusion in our model is anisotropic based on the
structural information, it has better edge protection ca-
pabilities. Secondly, our filter model can give obviously
smaller s value than that of the tensor diffusion model.
In addition, compared with the tensor diffusion model,
our filtering model will not lead to virtual stripes, such
that it can filter off noise more effectively. Thirdly, our
filter model gives a little larger s value than that of the
P-M diffusion model. This result may be caused by the
large σk,l value of the edge point (k, l) in our model,
whereas the filtered result by the P-M diffusion model is

Table 1. Performance Evaluation of Three PDE
Filter Models Based on Fringe Patterns in Fig. 1

Methods f s

P-M Diffusion Model 0.8333 0.0203

Tensor Diffusion Model 0.9079 0.0681

Our Diffusion Model 0.9225 0.0323

smoothed in both edge and inner fringe. These results
prove that our model efficiently protects the structure of
an image.

In conclusion, the advantages and disadvantages of
the P-M diffusion and the tensor diffusion models are
initially analyzed. An anisotropic PDE noise-reduction
model based on coherence and P-M diffusions is then
proposed. The proposed model is anisotropic based on
the structure information of the image, which can re-
pair the broken edges of the image and filter off the
noise inside fringes effectively. The proposed method is
tested on the fringe and phase patterns. The qualitative
and quantitative results demonstrate that the proposed
model has good noise reduction and edge protection capa-
bilities. This model is an effective pre-processing method
for ESPI fringe and phase patterns.
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